
Bulk Resilience of Fibers 

R. P. NACHANE, K. R. KRISHNA IYER, and N. B. PATIL, Cotton 
Technological Research Laboratory (ICAR), Matunga, 

Bombay 400 019, India 

Synopsis 

A theory has been developed for the average bending deformation of fibers in an assembly 
subjected to compression. It is shown that the maximum average bending deformation of the 
fibers does not exceed 1’7, implying that the method of bulk resilience cannot be used as an 
indicator of elastic recovery of fibers for any precision measurements. 

INTRODUCTION 

A considerable amount of experimental work14 has been reported on 
compressibility and compressional resilience of fiber plugs. Theoretical ap 
preach to relate the deformation of individual fibers with the compression 
of the plug seems to have been made only by Van Wyk.6 In developing a 
theory to obtain the compression of the fiber mass in terms of the applied 
load, Van Wyk considered the fiber as a rod supported at a large number 
of points spaced a distance 2b apart. The force Fat the midpoint of each 
segment, assumed horizontal, was obtained as 

F = 24iEy/b3 

where i is the moment of intertia of cross section of the segment, E is the 
Young’s modulus of the material, and y the displacement of the midpoint 
of the segment. Since, however, in a fiber assembly, the segments do not 
remain horizontal but are randomly oriented, the above simplification does 
not appear to be quite admissible. 

A study of bulk resilience of cotton was carried out recently in this lab- 
oratory with a view to examine whether this method could be used for 
assessing the efficacy of resin treatments usually meant for increased elastic 
recovery. If successful, it was proposed to adopt the method for identifying- 
at the fiber stage itself-cotton varieties that are more suited for resin 
finishing treatments. The method used for measurement of bulk resilience 
was that developed by Fox and Finzel.’ A plug of cotton fibers weighing 1 
g was contained in a metallic cylinder of 1 in. diameter mounted on the 
crosshead of the Instron Tensile Tester. This fiber mass was subjected to a 
number of compression-decompression cycles with a piston attached to the 
load cell of the Instron. Bulk-resilience measurement was made only after 
conditioning the sample in this manner. 

The above experimental study showed that, although crosslinking treat- 
ment brought about an overall increase in bulk resilience, there was con- 
siderable overlap in the values of this property among samples treated to 
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markedly different levels of crosslinking and hence of tensile elasticity. The 
results also failed to show any measurable difference among different va- 
rieties of cotton. This relative insensitivity of bulk resilience to structural 
changes has been explained in this paper by an analytical approach whereby 
it has been shown that, in the bulk test, individual fiber deformation is 
extremely small. 

THEORY 

Let us consider an assembly of fibers enclosed in a cylinder. This assembly 
is assumed to be small enough in size so that the weight of upper portions 
of the assembly does not compress the lower portions to any significant 
extent. In this assembly, each fiber is bent at a number of places where it 
comes in contact with other fibers. A segment of fiber between two adjacent 
contact points has a very large radius of curvature, so that it can be assumed 
to be straight. We call this a “fiber element.” As has been shown by Duckett 
and Chenge and Komori and Makishima,g the average length of the fiber 
element for random distribution of fibers is close to the value calculated 
by Van Wyk, namely, about 15 times the diameter for cotton fibers under 
conditions in which bulk resilience measurements are generally carried 
out. 

It has been shown by Stearn lo that when such a mass of fibers is com- 
pressed to half the original size, the number of contact points increases 
only by a factor of about 1.2. Hence, in the limits in which the experiments 
for bulk recovery are usually carried out, i.e., the extent of compression is 
less than half the original volume, it can be assumed that the element 
length would effectively remain the same during compression in the course 
of the experiment. 

In the assembly of fibers there are a large number of elements like this. 
Since there is no preferential direction of alignment for the fiber elements, 
we assume that the fiber elements are randomly oriented. 

In short, the above assumptions can be stated as: (i) fibers lie in a zig- 
zag manner in the assembly, each fiber bending at points where it comes 
in contact with other fibers; (ii) the fiber segments between two successive 
bends (referred to as fiber elements) are essentially straight and of the same 
length a; (iii) the fiber elements are randomly oriented. 

Let us fix rectangular coordinates in the fiber mass with z-axis along the 
vertical. Let 8 (range 0-7r/2) be the angle between a fiber element and the 
z-axis and 4 (range 0-27r) be the angle between the x-axis and the projection 
of the element on the horizontal x-y plane. 

If all the elements are imagined to be at the origin, the number of ele- 
ments between 8 and 8 + d6 will depend on the area of the annular ring 
formed on the surface of the hemisphere of radius a (Fig. 1). Hence, the 
probability P that an element lies between 8 and 8 + de is 

P= 2ra2 sin 8 de 
27ra2 

= sin 8 de 

Since + can take any value between 0 and 277 on the x-y plane, the prob- 
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Fig. 1. Sketch showing probability of an element lying between (0) and (0 + ~30). 

ability that an element has inclination between (p and + + d+ is d+/2r. 
Thus, probability P’ that an element lies between (0 and 8 + de) and (+ 
and + + d+) is 

P’=sinedB* 
2T 

(1) 

Now, let us consider a case of two successive elements specified by angles 
(e,, (PJ and (&., &.) belonging to the same fiber. The angle between these 
two elements can be obtained from their direction cosines (I, m, n) which 
are 

I1 = sin e1 cos +1, ml = sin e1 sin (PI, n, = cos e1 
l2 = sin e2 cos &, m2 = sin e2 sin #Jo, n2 = cos e2 

If + is the angle between the elements, then (r - +) is the angle made 
by lines having the above direction cosines. Thus, 

cos(7r - +) =1112 + mlm2 + n1n2 

= sin e1 cos & sin e2 cos $2 

+ sin e1 sin (p, sin e2 sin (p2 + cos 8, cos e2 

(2) 

To find the average value of +, from eqs. (1) and (2), 

CGqa = JJJJ [cos-‘(sin e1 cos $I sin e2 cos +2 

+ sin e1 sin (PI sin e2 sin 42 + cos e1 cos e2)]sin e1 sin e2 de1 de2 w (3) 

where the limits of integration are 

for t& and e2, from 0 to m/2 for 41 and +2, from 0 to 27~ 
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The integral can be evaluated numerically by Simpson’s one-third and 
Weddler’s rules” for double integration. This gives 

(r - $) = 72.8 

or 

3; = 107.2 (4) 

Now, the probability of an element making an angle between 8 and 8 + 
d&J is sin 8 de. Therefore, average 8 for elements in the assembly is 

s al2 8= 8 sin e de = 1’ = 57.3” (5) 0 

We consider a model of bulk of fibers in which all the elements make an 
angle of 1” with the direction of compression (assumed to be vertical), and, 
also, consecutive elements on the same fiber make an angle of 107.2” with 
each other. This is an idealized model of a bulk of fibers which has random 
orientation of the elements. We call this an averaged model of a mass of 
fibers. This means that 

e1 = 57.3” = t12 and I) = 107.2 

Now, we put the X, y-axes in such a way that +i = 0 for an element. We 
need to find +2. From eq. (21, substituting proper values, we get 

cos 72.8” = sin2 57.3” cos & + cos2 57.3 (6) 

Therefore, 

cos $2 = 0.0055 

or 

C#J~ = 8941’ (7) 

This means that +2 - +1 = 8941’ or A+ between two consecutive elements 
on an average is 8941’. 

In bulk compression, this averaged assembly is compressed by the height 
factor fas compared to its original height. Assuming that all the elements 
are displaced in the same manner everywhere throughout the mass, all the 
elements now make angle 8’ instead of 57.3” with the z-axis. 

Projection of an element in the vertical direction is equal to a cos 8’. But 
the original projection of an element in the z-direction before compression 
is a cos 57.3”. Since compression is to f times its original height, we must 
have 

a cos 8’ = fx aces 57.3 
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or 

cos 9’ = f cos 57.3 

We assume that A+ (= 8941’) does not change during compression of 
the fiber mass. In fact, projection of an element on x-y plane is sin 1” (= 
0.85) times the element length. This can at best become equal to the element 
length, when the fiber mass is hypothetically compressed to the limit of 
zero volume. This means that lateral shift will be always far less than 0.15 
of the element length in the operating conditions. Therefore, lateral shift 
can be neglected: 

sin 0’ = (1 - f 2 cos2 57.31% 63) 

If +’ is the angle between two consecutive elements in the compressed 
state, then, using eq. (21, we obtain 

cos(7r - $I’) = (1 - f 2 CO82 57.3”) cos(& - $2) (9) 
+ f 2 co9 57.3 

This means that if a mass of fibers is compressed to f times its original 
height, then average value I)’ of the angle between two consecutive elements 
of the fiber is given by eq. (9). Knowing ;j; (107.2”) from eq. (4), the deformation 
or the difference ($ - +‘) can be easily worked out. 

In the trival case, when f = 1, 

cos(7r - I)‘) = 0.2957 

or 

or 

(T - +‘) = 72.8 

+’ = 107.2 (10) 

which is also obtained from eq. (4). 
In the extreme case, when the fiber mass is subjected to compression so 

that f = 0, we get 

cos(n - $7 = cos 8941 

or 

Therefore, 

T - $I’ = 8941’ 

deformation = $ - +’ N 17 

(11) 

(12) 
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The maximum deformation that can be caused is 17”. In the actual ex- 
periments the deformation will be quite less than 17”. 

(Here, of course, when f -+ 0, the deformation is not restricted to bending 
alone, but will start causing a lateral compression of the individual fibers 
at contact points). 

CONCLUSION 

In a bulk resilience experiment, the maximum deformation, i.e., the ex- 
tent of bending of consecutive elements, is on an average less than 17”. This 
level of deformation is too small to differentiate samples having somewhat 
close values of bending recovery. When a set of such samples is tested for 
bulk resilience, the results will overlap considerably, signifying the lack of 
sensitiveness of bulk resilience to moderate changes in bending recovery. 
However, while testing different types of fibers such as cotton, wool, etc., 
which are structurally different and hence have widely different recovery 
properties, discernible differences in bulk resilience can be found to occur. 

The authors thank Mr. D. V. Mhadgut for help in numerical integration and Dr. V. Sun- 
daram, Director, CTRL, for permission to publish this article. 

NOMENCLATURE 

; 
hn 
P 
P 
0 
8’ 

4J 

tt 

length of fiber element in the fiber assembly 
height of the fiber plug as a fraction of the height before compression 
direction cosines of a fiber element 
probability that a fiber element lies between 0 and 0 + dfI 
probability that a fiber element lies between both 0 and 0 + d0 and + and + + d+ 
angle between a fiber element and the z-axis before the plug is compressed 
angle between a fiber element and the z-axis after the plug is compressed 
angle between the x-axis and the projection of the fiber element on the r-y plane 
angle between consecutive fiber elements before compression of the fiber plug 
angle between consecutive fiber elements in the compressed state of the plug 
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